
Surface second-harmonic generation from scattering of surface plasmon polaritons from radially
symmetric nanostructures

Lina Cao*
Department of Chemistry, Columbia University, New York, New York 10027, USA

N. C. Panoiu
Department of Electronic and Electrical Engineering, Photonics Group, University College London, Torrington Place,

London WC1E 7JE, United Kingdom

Ravi D. R. Bhat and R. M. Osgood, Jr.
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA

�Received 6 February 2009; revised manuscript received 1 May 2009; published 16 June 2009�

We present a comprehensive study of linear and nonlinear effects observed in the scattering process of
surface plasmon polaritons �SPPs� from localized two-dimensional surface deformations at a metal/dielectric
interface. Thus, the electromagnetic field at the fundamental frequency �FF�, for both p and s polarizations, is
first determined by solving the corresponding set of reduced Rayleigh equations. The complete solution of
these equations allows us to investigate both the complex structure of the scattered electromagnetic field as
well as subtle mechanisms by which incident SPPs are scattered into radiative modes �light� and outgoing SPP
waves. Furthermore, the electromagnetic field at the FF is used to determine the nonlinear surface polarization
at the second harmonic �SH� and subsequently both the electromagnetic field distributions as well as the
amount of light generated at the SH. Calculations are performed for three geometries that are relevant in many
experiments, namely, Gaussian, hemispherical, and cylindrical nanodefects. Finally, throughout our analysis,
we discuss potential applications of our findings to surface spectroscopy, surface chemistry, or imaging tech-
niques of surface nanodefects.
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I. INTRODUCTION

Over the last few years, we have witnessed a renewed
interest in both the physical properties of surface plasmon
polaritons �SPPs� as well as their use in nanodevices with
new or improved functionality. In particular, recent advances
in materials, surface science, and nanofabrication techniques
have made possible the design and experimental implemen-
tation of new plasmonic nanostructures and nanodevices,
which exhibit remarkable physical properties and a great po-
tential for advanced technological applications. To this end,
of particular interest has been the optical properties of SPPs,
which are strongly localized p-polarized surfaced waves
formed at the interface between a metal and a dielectric,1–4 as
well as their interaction with metallic nanostructures.5–7 One
of the consequences of the extreme light localization at
metal/dielectric interfaces or close to the surface of metallic
nanoparticles is that extended �propagating waves� or local-
ized surface plasmon polaritons can be used to achieve
strong enhancement of the electromagnetic field, a property
with important technological applications. To be more spe-
cific, this property can be employed to design new linear
plasmonic devices,8–16 detectors, and other photovoltaic de-
vices �solar cells�,17–20 optical sensors,21,22 or study a series
of photochemical processes.23,24 In addition, and also of par-
ticular importance for practical applications, the strong en-
hancement of the electromagnetic field leads to the possibil-
ity to achieve strong nonlinear optical effects, such as second
harmonic �SH� generation �SHG� �Refs. 1–7 and 25–35� and
surface-enhanced Raman scattering �SERS�,36–39 at remark-
ably low optical power.

Surface SHG has become an essential diagnostic tool for
physical chemistry, noninvasive surface analysis, and cata-
lytic chemistry, chiefly because this nonlinear optical wave
interaction is strongly dependent on the physical properties
and local structure of surfaces and interfaces. This sensitivity
of SHG is particularly important if one considers SHG at the
surface of a centrosymmetric material, as in this case the lack
of dipole-allowed optical transitions in the bulk of such ma-
terials leads to the vanishing of the otherwise dominant bulk
SHG. In this case, the total SH signal is generated within a
layer of only a few angstroms thickness, and therefore it is
strongly dependent on the physical structure of this surface
layer or its chemical properties, e.g., the nature of adsorbates
at the surface or interface. In addition, surface SHG is a
useful probing technique because it is noninvasive and has
micrometer-scale spatial resolution. Moreover, the properties
of surface SHG process, e.g., the polarization of the gener-
ated signal and the spatial distribution of the near and far
fields, are markedly different from those of the correspond-
ing linear scattering process and further enabling this nonlin-
ear optical process to be a unique tool for the analysis of
surfaces and interfaces.

In the standard approach to nonlinear surface probing, a
laser source illuminates a surface and the scattered radiation
is detected. In some cases metal particles are present on the
surface and in that case it is well known that the scattering
process is enhanced via the excitation of local surface-
plasmon-polariton modes in the metal object. More recently
the interest in propagating plasmon polaritons has led several
groups to consider the use of these waves as the primary
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probing source of surface features. Indeed recent beautiful
work involving photoemission electron microscopy studies
of illuminated surfaces40 has shown that this approach is not
only useful but can also provide a route to examine coherent
plasmon effects. The question then arises as to whether this
“plasmon-source” approach could also provide a useful
source to examine surface features via nonlinear surface
wave excitation. Such an approach would have the advantage
of a closer coupling of the excitation source with the surface
feature to be examined. Further it would also be possible to
envision using nonoptical excitation means such as injected
electrons.

Thus, in this paper we examine the physics of two-
dimensional �2D� wave scattering from surface nanodefects.
In fact we extend our earlier analysis32 of the SHG from
scattering of SPP waves from one-dimensional �1D� surface
nanodefects to the more realistic case of two-dimensional
radially symmetric surface nanodefects. Importantly, our
analysis does not simply extends the results obtained in the
1D case to the 2D geometry, as the latter case presents an
additional complexity that stems from the more intricate po-
larization properties of the electromagnetic field that is gen-
erated near a 2D metallic nanodefect. Thus, unlike the 1D
case, when both the SPP waves and the radiated light are p
polarized, in the 2D case the radiative modes have both s-
and p-polarized components. This increased degree of com-
plexity has important implications for the structure of the
near- and far-field angular distributions and the magnitude of
emitted radiation, both at the fundamental frequency �FF�
and at the SH.

The paper is organized as follows. In Sec. II, we introduce
the analytical formulation of our problem and the numerical
method we used in our approach. Thus, we introduce a set of
coupled-reduced Rayleigh equations whose solution fully de-
termines the electromagnetic field at the FF. Also, we intro-
duce the numerical method used to solve this system of
equations. Moreover, we describe our approach to determine
the electromagnetic field and the amount of emitted radiation
at the SH from the electromagnetic field at the FF. In Sec. III,
we present our results obtained by solving this analytical
model. Thus, we consider three different radially symmetric
surface nanodefects, namely, Gaussian, hemispherical, and
cylindrical nanodefects, and for each of them we determine
the spectral properties and the spatial distribution of the field
at the FF and SH. Also, we investigate the influence of the
geometrical structure of the nanodefect on the scattering pro-
cess. In the last section, we summarize our results.

II. THEORETICAL APPROACH AND NUMERICAL
ALGORITHM

In this section we present the theoretical formalism used
to analyze the scattering of SPPs from surface metallic nano-
defects as well as the numerical method used in our analysis.
Our calculations provide the spatial distribution of the elec-
tromagnetic field and the spatial pattern of the radiated light,
both at the FF and the SH.

A. Linear scattering of surface plasmon polaritons

In order to study the scattering process of SPP waves from
surface nanodefects, we consider a system consisting of a

SPP wave propagating on a planar metallic surface located in
the �x1 ,x2� plane, a wave that is incident onto a surface nano-
defect; the corresponding geometry is illustrated in Fig. 1.
The surface profile, which for the sake of simplicity is cho-
sen to be radially symmetric, is described by a surface-profile
function x3=��x��, where x� ��x1 ,x2�. For the function ��x��,
which describes the shape of the surface nanodefect, we
considered three choices, namely, a Gaussian, ��x��=h
�exp�−x�

2 /R2�, with height h and width R; a cylinder, ��x��
=h ,x� �R, with height h and radius R; and a spherical cap,
��x��= � ��R2−x�

2−�R2−�2� ,x� ��, with R and � as the ra-
dius of the sphere and the cap, respectively. Note that with
these choices for the surface-profile function ��x�� we can
study surfaces with both protuberances �h�0� and indenta-
tions �h�0�. The incoming SPP propagates along the x1 di-
rection and, upon its interaction with the surface nanodefect,
generates scattered SPP waves as well as radiative modes
�photon states�, which propagate outwardly, away from the
nanodefect.

We consider that the SPP propagates at the interface be-
tween vacuum and a metal, which is chosen to be silver in
our calculations; the extension to the more general case of a
dielectric/metal interface is trivial. The electromagnetic
properties of the metal are modeled via a dielectric function
that obeys the Drude model, ��	�=1−	p

2 /	2, where 	p is
the plasma frequency of the metal and 	 is the frequency.
For silver, the corresponding plasma wavelength is 
p
=145.9 nm.41 Note that this choice for the metal dielectric
function does not take into account the optical losses, that is,
the imaginary part of ��	� is set to zero; however, this is a
good approximation since the characteristic size of the nano-
defect is much smaller than the plasmon absorption length,
and therefore only a negligible amount of energy is dissi-
pated during the scattering process. As a result, the electro-
magnetic energy is conserved during the scattering process.
Accounting for loss is relatively straightforward since its ef-
fect on the wave is over a scale size which is much longer
than that of the scatterer.

In order to analyze the scattering process of the SPP wave
at the FF, we employ a method based upon a set of coupled-
reduced Rayleigh equations.2,42–44 To begin with, it is as-
sumed that in the vacuum region, x3���x��, the amplitude
E�x ;	� of the electric field, which is defined by the har-
monic dependence E�x ; t�=E�x ;	�ei	t, consists of the inci-
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FIG. 1. �Color online� Schematic of the scattering geometry and
the radiated waves involved in the nonlinear scattering process.
Fields in the region denoted by L=3.5R are integrated to calculate
SHG.
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dent SPP wave and a scattered field that contains both radia-
tive modes �scattered light� and scattered SPP waves:

E↑�x;	� =
c

	
�ix̂1�0�	� − x̂3k��	��eik��	�x1−�0�	�x3

+� d2q�

�2��2	 c

	
�iq�
0�q�� − x̂3q��Ap�q��

+ �x̂3 � q��As�q��
eiq�·x�−
0�q��x3. �1�

Here, E↑�x ;	� is the electric field at the frequency 	, the
arrow designates the vacuum region, k��	� and �0�	� are the
plasmon wave vector and the inverse decay length of the
field in the direction normal to the surface, respectively, and
are given by the relations

k��	� =
	

c
� ��	�

��	� + 1
, �2a�

�0�	� =
	

c
� − 1

��	� + 1
. �2b�

These components of the plasmon wave vector satisfy the
dispersion relation k�

2�	�−�0
2�	�= 	2

c2 . Moreover, the function

0�q�� is defined by


0�q�� = � �q�
2 −

	2

c2 , q� �
	

c

− i�	2

c2 − q�
2, q� �

	

c
,� �3�

where the vector q� = �q1 ,q2 ,0� is parallel to the metal sur-
face. Note that for a surface plasmon k��	��	 /c, and there-
fore 
0�k��	��=�0�	�. Finally, As�q�� and Ap�q�� are scatter-
ing amplitudes of the s- and p-polarized waves, respectively.
Based on the definition of 
0�q�� �Eq. �3��, it can be seen that
for q� �

	
c the scattered waves in Eq. �1� are evanescent

waves, whereas for q� �
	
c they are electromagnetic plane

waves �radiative modes� scattered into the vacuum. Note that
the expansion given in Eq. �1� is valid within the Rayleigh
hypothesis, namely, close to the surface the series expansion
of the electromagnetic field contains only outward propagat-
ing waves. In particular, for small surface nanodefects this
assumption is rigorously satisfied.45

In order to calculate the scattering amplitudes As�q�� and
Ap�q��, one requires that Eq. �1� together with the corre-
sponding equation for the metal region satisfy the boundary
conditions at the vacuum/metal interface, a condition that
can be cast into a set of coupled-reduced Rayleigh
equations:42,46

f i�p��Ai�p�� + 

j=s,p

� d2q�

�2��2gij�p�,q��Aj�q��

= − gip�p�,k��, i = p,s �4�

where the functions fs,p are given by

fs�p�� =

0�p�� + 
�p��

1 − ��	�
, �5a�

fp�p�� =
��	�
0�p�� + 
�p��

1 − ��	�
, �5b�

with


�q�� =�q�
2 − ��	�

	2

c2 �6�

being the inverse decay length of the electromagnetic field
inside the metal. The kernel functions gij are given by the
following expressions:

gss�p�,q�� = J�p�,q��
	2

c2 p̂� · q̂� , �7a�

gpp�p�,q�� = J�p�,q���p�q� − 
�p��
0�q��p̂� · q̂�� , �7b�

gsp�p�,q�� = iJ�p�,q��
	

c

0�q���p̂� � q̂��3, �7c�

gps�p�,q�� = − iJ�p�,q��
	

c

�p���p̂� � q̂��3. �7d�

Here, p̂� and q̂� are unit vectors and the function J�p� ,q�� is
defined as

J�p�,q�� =� d2x�

e�
�p��−
0�p�����x�� − 1


�q�� − 
0�q��
ei�q�−p��·x� �8�

We now introduce the azimuthal angles �x, �q, and �p,
which characterize the direction of the vectors x�, q�, and p�,
respectively. The scattering amplitudes As�q�� and Ap�q�� are
then expanded in Fourier series,

Aj�q�� = 

n=−�

�

Aj
�n��q��ein�q, j = s,p , �9�

and the Fourier coefficients corresponding to the p-polarized
waves, Ap

�n��q��, are rescaled so as to separate their singular
behavior at the plasmon wave vector q� =k� �the function
fp�q�� has a simple zero at q� =k� and fp�k��=0�,

Ap
�n��q�� =

ap
�n��q��
fp�q��

. �10�

Note that since the scattering amplitudes Ap
�n��q�� have a

simple pole at q� =k�, the reduced scattering amplitudes
ap

�n��q�� are bounded functions. Finally, by substituting Eqs.
�9� and �10� into relation �4� one obtains the following set of
coupled integral equations:

ap
�n��p�� +

1

2�
�

0

�

dq�q��hpp
�n��p�,q��
fp�q��

ap
�n��q��

+ hps
�n��p�,q��As

�n��q��� = − hpp
�n��p�,k�� , �11a�
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fs�p��As
�n��p�� +

1

2�
�

0

�

dq�q��hsp
�n��p�,q��
fp�q��

ap
�n��q��

+ hss
�n��p�,q��As

�n��q��� = − hsp
�n��p�,k�� , �11b�

where

hss
�n��p�,q�� =

1

2

	2

c2 �Nn−1 + Nn+1� , �12a�

hpp
�n��p�,q�� = Nnp�q� −

1

2

�p��
0�q���Nn−1 + Nn+1� ,

�12b�

hsp
�n��p�,q�� = −

1

2

	

c

0�q���Nn−1 − Nn+1� , �12c�

hps
�n��p�,q�� =

1

2

	

c

0�q���Nn−1 − Nn+1� , �12d�

and

Nm =
2�


�p�� − 
0�q��
�

0

�

�e�
�p��−
0�q�����x�� − 1�

� Jm�p�x��Jm�q�x��x�dx� . �13�

Equations �11� are solved numerically for the scattering am-
plitude coefficients ap

�n��p�� and As
�n��p�� and, subsequently, by

using the Fourier expansions in Eq. �9�, the scattering ampli-
tudes As,p�p�� are determined. These scattering amplitudes
fully determine the distribution of the electric field in the
spatial region x3���x��, at the FF, as shown by Eq. �1�.

B. Light scattering at the second harmonic

The complete description of the spatial distribution of the
electromagnetic field at the FF allows one to determine the
field distribution at the SH. Thus, according to the phenom-
enological model that is used to describe the physical prop-
erties of the SHG at the interface between two centrosym-
metric media, the generated SH has two sources, namely, a
surface nonlinear polarization localized within a thin surface
layer at the interface between the two media and a nonlocal
polarization originating from bulk magnetic dipoles and elec-
tric quadrupoles. Although the two media are centrosymmet-
ric and thus electric-dipole transitions are not allowed, the
inversion symmetry is broken in the thin layer at the inter-
face between the two media and therefore a sheet of nonlin-
ear surface polarization at the SH, Ps

�2	��r�, is induced at this
interface. This nonlinear polarization is related to the electric
field at the FF by a second-order nonlinear susceptibility
tensor,

Ps
�2	��r� = �̂s

�2�:E�	��r�E�	��r���x3 − ��x��� , �14�

where �̂s
�2� is the surface second-order susceptibility and the

Dirac function describes the surface characteristic of the
source polarization.

In the case of homogeneous isotropic media excited by
plane waves the bulk nonlocal nonlinear polarization can be
expressed as47,48 Pbulk

�2	��r�=�� �E�	��r� ·E�	��r��, where �
=e�1−��	�� /32�m	2 and e and m are the charge and mass
of the electron, respectively. As has been demonstrated,49 the
longitudinal nature of this nonlinear polarization makes it
that its contribution to the SHG is indistinguishable from that
of the surface nonlinear polarization given in Eq. �14�. In
practice, this contribution is accounted for by rescaling the
components of the surface susceptibility �̂s

�2� so as to include
the contributions of both the surface and bulk polarizations.
Nevertheless, in the case of metals these two nonlinear po-
larization sources have largely different relative contribu-
tions to the SHG process, especially if 	 is close to the
frequency of resonantly excited SPPs. Thus at this frequency,
the contribution of the surface nonlinear polarization to the
SHG is enhanced significantly more than that of the bulk
source,50 and therefore the bulk contribution can be ne-
glected. Indeed, recent experiments have demonstrated that
in the case of metals with good, i.e., low-loss optical prop-
erties �Ag and Au� the surface nonlinear susceptibility is
about 2 orders of magnitude larger than the bulk one.51

In most cases of practical interest, the metal/vacuum in-
terfaces possess an isotropic mirror-symmetry plane perpen-
dicular to the interface. Under these circumstances, the sur-
face nonlinear susceptibility �̂s

�2� has only three independent
components, which are �̂s,���

�2� , �̂s,���
�2� , and �̂s,���

�2� = �̂s,���
�2� ,

where � and � refer to normal and perpendicular directions
to the surface, respectively. In our calculations, we assume
the following values for the independent components of the
susceptibility tensor �̂s

�2�, �̂s,���
�2� =5.02�10−18 m2 /V,

�̂s,���
�2� =−2.54�10−21 m2 /V, and �̂s,���

�2� = �̂s,���
�2� =1.13

�10−20 m2 /V.51 However, it should be noted that in certain
cases the metal/vacuum interface lacks a mirror-symmetry
plane, namely, when chiral molecules are adsorbed at the
interface or in the case of nanopatterned metallic surfaces.

Since the source of the electromagnetic field at the SH is
the surface nonlinear polarization Ps

�2	��r�, we can fully char-
acterize the SHG process once we know the multipole mo-
ments associated with the charge distribution generated by
this nonlinear polarization. As the characteristic size a of the
nanodefect is considerably smaller than the plasmon wave-
length, k��	�a�1, we have restricted our calculations to
multipoles up to the second order, that is, the electric dipole
moment, the magnetic dipole moment, and the electric quad-
rupole moment; they are defined by the following relations:52

p =� P�2	��r��d3r�, �15a�

m = −
i	

2
� r� � P�2	��r��d3r�, �15b�

Q�n� =� �3��r̂ · r��P�2	��r�� + �r̂ · P�2	��r��r���

− 2�r� · P�2	��r���r̂�d3r�. �15c�

Since we are only interested in the SH generated by the
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nanodefect, the integration region in Eqs. �15� for a Gaussian
defect is chosen to be L=3.5R, as illustrated in Fig. 1. For
the case of spherical cap and cylinder, the domains of inte-
gration are chosen to be ��x���0, that is, L=2� for the
spherical cap and L=2R for the cylinder. It should be noted
that in our study we do not consider the SHG from the entire
flat surface, which has been extensively studied, because it
contributes only a uniform background illumination.3

The angular distribution for the radiated power at the SH,
originating from the multipoles described by Eqs. �15�, is
given by the following equations:53

dPed

d�
=

Z0c2K4

32�
��n � p� � n�2, �16a�

dPmd

d�
=

Z0K4

32�
��n � m� � n�2, �16b�

dPeq

d�
=

Z0c2K6

1152�2 ��n � Q�n�� � n�2, �16c�

where Ped, Pmd, and Peq correspond to the power radiated by
the electric dipole, magnetic dipole, and electric quadrupole,
respectively. K=2	 /c is the wave vector at the second har-
monic and Z0=��0 /�0 is the vacuum impedance. As is well
known from classical electrodynamics, at longer wave-
lengths the main contribution to the emitted energy comes
from the electric-dipole moment �Ped�
−4�, whereas at
smaller wavelengths the radiated energy comes primarily
from the magnetic and quadrupole moments �Pmd, Pqd
�
−6�. Finally, calculating these multipoles allow us to de-
termine not only the radiative field at the SH but also the
near field; the corresponding near-field formulas are not pre-
sented here as their expressions are rather long and cumber-
some.

C. Numerical approach

To solve Eqs. �11� numerically, we follow a procedure
described in Ref. 2. Thus, this system of coupled equations is
discretized on a uniform computational grid that spans the
domain q� , p� � �0,�max�, the step size of the computational
grid being �q�. To reach convergence of the numerical re-
sults, �1500 grid points are necessary, whereas the upper
limit of the wave vectors p� and q�, �max, is chosen to be in
the range of 20 /R−70 /R. In addition, the computational grid
is constructed in such a way that the point k� is one of the
grid points.

In the discretization process, the integrals in Eqs. �11� are
calculated as a sum of integrals defined over the intervals
between adjacent grid points, each of these integrals being
then approximated as the product between the integrand
evaluated at the midpoint of the interval and the size of the
interval, �q�. As previously explained, the integral Eqs. �11�
have a singularity �a simple pole� at q� =k�. This singular
point is treated separately, the corresponding integral being
calculated analytically. As a result of this discretization pro-
cedure, Eqs. �11� are cast into two linear coupled matrix
equations, which are solved by using standard numerical

techniques. The corresponding disctretized equations can be
written in the following form:

ap
�n��pi� +

1

2�



j

�qqj�hpp
�n��pi,qj�
fp�qj�

ap
�n��qj� + hps

�n��pi,qj�As
�n�

��qj�� = − hpp
�n��pi,k�� , �17a�

fs�pi�As
�n��pi� +

1

2�



j

�qqj�hsp
�n��pi,qj�
fp�qj�

ap
�n��qj� + hss

�n�

��pi,qj�As
�n��qj�� = − hsp

�n��pi,k�� , �17b�

where i and j indices are the grid points. Furthermore, in the
case of a Gaussian-shaped defect, the integrals Nm defined by
Eq. �13� can be expressed as a series of Bessel functions of
the second kind, Im,

Nm�p�,q�� = �AR2

n=1

�
��
�p�� − 
0�q���A�n−1

n · n!

� e−�p�
2+q�

2�R2/4nIm� p�q�R2

2n
� . �18�

For the hemisphere- and cylinder-shaped defects the integral
that defines the functions Nm�p� ,q�� are calculated numeri-
cally by using an adaptive integration algorithm.54 Moreover,
in the case of cylindrical nanodefects, in order to resolve the
strongly inhomogeneous electromagnetic field near the sharp
corners, a considerably large number of grid point must be
used, with the result of a slow convergence rate of the nu-
merical algorithm. In order to overcome this problem, a nu-
merical procedure was employed that in effect smoothes out
the top edge of the cylinder, namely, the shape function ��x��
was multiplied by the function shape factor 1− 1

cosh�p1�p2R−x��� ,
with p1=0.6�108 and p2=1.12.

Finally, once the complete distribution of the electromag-
netic field at the FF is determined through the method just
described, the scattering process at the SH is numerically
characterized as follows. First the surface nonlinear polariza-
tion Ps

�2	��r� is calculated using Eq. �14�, and subsequently
the multipoles are determined from Eqs. �15�. The spatial
distribution of the electromagnetic field at the SH and the
corresponding emitted power are then calculated by using
Eqs. �16�.

III. RESULTS AND DISCUSSION

In this section we present and discuss the main results
pertaining to the spatial distribution of near and far field, as
well as the spatial pattern of the scattered light, both at the
FF and the SH.

A. Field distribution and scattered light: Fundamental
frequency

The theoretical formalism presented in Sec. II A provides
a full description of the distribution of the electromagnetic

SURFACE SECOND-HARMONIC GENERATION FROM… PHYSICAL REVIEW B 79, 235416 �2009�

235416-5



field, both in the close proximity of the defect �the near
field�, as well as far from the scatterer �the far field�. A ge-
neric example of the spatial distribution of the field ampli-
tude at the FF, �E↑�r ;	��, corresponding to a Gaussian inden-
tation, is presented in Fig. 2. Among other things, this figure
clearly shows the transition between the near field, seen as a
series of ripples that are formed through the interference be-
tween the incident plasmon field and the scattered field and
the far field, which is seen as an emerging beam of scattered
light �a nanoflashlight� emitted by the defect. The angle of
this flashlight “beam” with respect to the surface normal is a
result of momentum matching between the SPP and scattered
light momenta and a characteristic reciprocal vector of the
scatterer, i.e., � /R, much as is the case of plasmon scattering
from a surface diffraction grating.1 Note that the width of the
emitted beam, measured in a transverse plane located at
1.5 �m above the metallic surface, is only a few hundreds
nanometers. Hence the plasmon scattering by metallic nano-
defects could provide an interesting and flexible approach to
generate and manipulate subwavelength optical beams, an
idea discussed in Ref. 2.

As an interesting aside, the property that the shape of the
defects considered here is invariant to rotation transforma-
tions implies that the scattering coefficients Ap,s

�n��q�� defined
by Eq. �9� obey the symmetry relation �Ap,s

�n��q���= �Ap,s
�−n��q���,

and therefore the total angular momentum of the scattered
electromagnetic field is zero. However, it can be easily seen
that in the case of chiral scatterers the just mention symmetry
relation no longer holds, and thus the scattered field, in par-
ticular the nanoflashlight seen in Fig. 2, will have a finite
angular momentum. One immediate consequence of this ef-
fect is that the scattering of SPPs from chiral defects can be
readily used to generate subwavelength optical beams carry-
ing angular momentum, namely, optical nanotweezers.

Deeper insight into the characteristics of the plasmon
scattering at the FF is provided by the frequency dependence
of the total scattering cross sections of SPPs and light. Since
the total energy is conserved in the scattering process, as the
imaginary part of the dielectric constant has been set to zero,
the total scattering cross sections of SPPs and light can be
used to calculate the amount of energy absorbed from the
incident SPP wave. This could be important in the case of
multiple scatterers that are located not very close to each

other, such that multiple-scattering processes can be ne-
glected since it would allow one to calculate the correspond-
ing absorption coefficient of the incident SPP wave. Thus,
using relations �A5� in the Appendix, we have calculated the
spectra of these scattering cross sections, both for indenta-
tions and protuberances. Note that the scattering cross sec-
tion corresponding to the emitted radiation contains the con-
tribution of both the s- and p-polarized waves. The results of
these calculations, summarized in Fig. 3, lead us to several
important conclusions. But before discussing the results note
that the general shape and appearance of these two scattering
cross sections is similar to that presented earlier by the Ma-
radudin and co-workers,2,43 although the greater computation
resources available at present allows a fuller spectral range to
be examined. First, both spectra show a resonant behavior, in
both cases the scattering process being most efficient at a
certain resonant frequency. The two resonant frequencies are
very different from each other, and thus one can infer that the
two scattering processes are only weakly coupled.55 More
specifically, whereas the generation of radiative modes can
be viewed as the result of the creation of spatial inhomoge-
neities in the incoming field, at the location of the defect, the
scattered surface plasmons are generated via the excitation of
localized plasmon modes supported by the surface defect.
This dichotomy in the scattering process also explains the
markedly different width of the SPP and light spectra of the
corresponding cross sections. In addition, a comparison of
the peak scattering cross sections suggests that the scattering
of the incident SPP into SPP waves is a much more efficient
process as compared to the scattering of the incident SPP
into radiation, the corresponding ratio of the cross sections
being �5. This result is explained by the fact that, due to
their similar characteristics, the overlap between the electro-
magnetic field of the incident and scattered SPP waves is
larger than the overlap between the fields of the incident SPP
wave and the emitted radiation.

Figure 3 also shows that surface indentations are more
effective in scattering the incident SPP, as compared with
protuberances, a result that can be attributed to the cavity
effect associated with such surface defects. Moreover, the
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FIG. 2. �Color online� Electric field distribution corresponding
to the scattering of a SPP off a Gaussian nanodefect with R
=200 nm and h=−50 nm where only the scattered light is shown.
The wavelength of the incident SPP is 
=328 nm.
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spectra of the scattering cross sections of both SPPs and light
show a steep decrease near 	 /	p�0.7, which is due to the
fact that surface SPP waves at the metal/vacuum interface
cannot exist if 	�

	p
�2

.
We have also investigated the dependence of the scatter-

ing cross sections on the size of the surface defect. The re-
sults corresponding to the scattering cross section of light are
summarized in Fig. 4�a�. Thus one can observe that in the
case of shallow surface defects the amount of radiated light
decreases as the radius of the defect increases, which sug-
gests that in the case of larger defects the field can easier
readjust to the shape of the defect and thus it is perturbed to
a smaller extent. However, if one compares the amount of
light scattered by defects with the same radius R but different
depth h one observe that more light is emitted by defects
with larger depth. Again, this result is explained by the fact
that the larger the depth of a surface defect, the stronger the
perturbation of the incident plasmon field; although not
shown, this same behavior follows when varying the height
of protuberance.

As we have discussed, unlike the 1D case, in the case of
2D surface defects the emitted light cannot only be p polar-
ized but also s polarized. The spectra of the total scattering
cross section as well as the corresponding spectra of the s-
and p-polarized light are shown in Fig. 4�b�. Thus, it can be
seen from this figure that the spectra corresponding to the
two polarizations show a similar resonant behavior; however,
the two resonant frequencies have slightly different values.
In addition, our calculations show that at low frequency
�long-wavelength side of the spectra� the radiated light is
predominantly s polarized, whereas the light emitted at high
frequencies �at the blue side of the spectrum� is predomi-
nantly p polarized.

Similar studies have been done of the dependence of the
peak SPP scattering cross section and the width of its spec-
trum on the width and depth or height of the defect. The
main results, plotted in Fig. 5, support the general conclusion
according to which the incident SPP wave generates SPP
modes localized at the site of the defect, which subsequently
decay into outgoing SPP waves. Thus, Fig. 5 shows that the
width of the spectrum of the scattering cross section de-
creases with the depth of the defect. As expected, deeper
defects are more effective in capturing and thus re-emitting
the incident SPP wave, an effect that leads to the broadening
of the SPP scattering cross-section spectra with the width of
the defect. On the other hand, the scattering cross section
depends only slightly on the radius of the defect.

A better understanding of scattering of the incident SPP, at
the FF, can be achieved by analyzing the distribution of the
electromagnetic field in the proximity of the surface defect.
In this connection, Fig. 6 shows the field distribution in two
horizontal sections, one at a distance that is only a fraction of
the wavelength of the plasmon and the other one located a
few wavelengths away from the metallic surface. Note that
the plots in Fig. 6 do not contain the field of the incident SPP
wave. This figure clearly illustrates the transition from the
near field to far field as well as the strong dependence of the
electromagnetic field on the polarization of the emitted field.
Thus, as expected, in the case of the s-polarized light, the
field is predominantly located at the position of the surface
defect. This behavior is a direct consequence of the fact that
the SPP waves are p polarized, and thus the s-polarized field
cannot propagate along the vacuum/metal interface. More-
over, Fig. 6 shows that in the case of the s-polarized scat-
tered light the electric field vanishes in the plane x2=0. To
understand this property, note that the electric field of the
s-polarized scattered light at the plane x2=0 is perpendicular
on this plane, and thus the symmetry considerations require
that it vanishes within this plane. In addition the electric field
for p-polarized light has a large value even a few wave-
lengths away from the surface defect. This electric field is
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radiated by the outgoing surface SPP waves that are gener-
ated in the scattering process. Also, note that the spatial dis-
tribution of the total field is similar to that of the p-polarized
light, which suggests that, at this wavelength, the radiated
light in the nanobeam directed in the x2=0 plane is predomi-
nantly p polarized. S-polarized light is emitted at two angles
with respect to this plane and is thus more diffuse in the x3
=1.2 �m plane shown here.

We have also investigated the dependence of the SPP-
surface defect scattering process on the specific shape of the
defect. In particular, we have considered the Gaussian, cylin-
drical, and hemispherical defects. The main results of this
analysis are presented in Fig. 7, which shows the frequency
dependence of the scattered light corresponding to these
three shapes of the surface defect. As expected, the scattering
cross section of light emitted by the Gaussian and hemi-
spherical defects have similar spectral characteristics,
namely, a broad spectrum with a maximum at a certain reso-
nant frequency. Unlike the case of these two types of surface
defects, the spectra corresponding to cylindrical defects, i.e.,
cylindrical holes or pillars, present a series of sharp well-
defined maxima which become more closely spaced as the
frequency approaches the asymptotic limit 	=

	p
�2

. These
spectral peaks can be associated with the excitation of plas-
mon modes with a vanishing longitudinal �along the x3 axis
of the cylinder� propagation constant at the surface of the
cylindrical defects. Indeed, the propagation constant of the
incident surface plasmon lies in the surface plane, and there-
fore any modes excited in the x3 plane for a cylindrical de-
fect must have a vanishing longitudinal propagation con-
stant. As it is well known,56,57 these modes form a sharp

discrete spectrum with the mode frequency asymptotically
approaching the limit frequency of

	p
�2

, irrespective of the
radius of the cylinder.

Our calculations show not only that the spectra of the
scattering cross sections depend on the particular shape of
the defect but also that the field distribution is strongly de-
pendent on the geometry of the defect. This property, which
can have a series of applications to near-field optical micros-
copy, is illustrated by the results summarized in Fig. 8. This
figure clearly shows that both the near field and the far-field
generated in the scattering process, at the FF, are strongly
dependent on the shape of the defect. For example, it can be
seen that, unlike the case of a Gaussian or hemispherical
defect, two nanobeams are emitted in the case of a cylindri-
cal defect.

B. Field distribution and scattered light: Second harmonic

The theoretical formalism presented in Sec. II B allows
one to determine the spatial distribution of the electric field
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at the SH and the corresponding scattering cross section,
once the electric field at the FF has been calculated. In addi-
tion, our theoretical model allows us to study the relative
contribution of the multipole moments to the total amount of
light generated at the SH.

A generic example that illustrates how our theoretical
model can be applied to study the generation of SH via the
scattering of SPP waves by surface defects is presented in
Fig. 9. Thus, this figure shows the spectra of the radiated SH,
the surface defects considered being Gaussian-shaped inden-
tations and protuberances. Our theoretical formalism allows
us to separate the contribution of each multipole moment to
the total generated SHG so that we show in Fig. 9 the spec-
trum of each of all these moments �up to the second order�.
Recall, however, that our approach is only valid if the wave-
length is larger than the characteristic size of the defect when
the multipole series expansion converges; we have used this
criterion in choosing the frequency range in which we have
calculated the scattering cross section at the SH. As ex-
pected, our calculations show that the SH generated at short
wavelengths is predominantly due to the higher-order multi-
pole moments �magnetic dipole and electric quadrupole�,
whereas at long wavelengths �low frequency� the SH is pri-
marily generated by the induced electric dipoles. In addition,
it can be seen that the frequencies of the maxima and minima
in the spectra corresponding to the magnetic dipole and elec-
tric quadrupole are the same; in fact overall, these spectra
exhibit nearly identical spectral variation. However, the spec-
trum corresponding to the electric dipole shows a quite dif-
ferent frequency dependence, a fact that is explained by the
particular dependence on wavelength of the power radiated
by the induced multipole moments �see Eq. �16��. Note also
that the total amount of generated SH increases with the
frequency of the incident SPP wave. Indeed, as the frequency
increases the incident SPP wave has a shorter wavelength
and thus interacts more strongly with the surface defect.
Consequently, the induced multipole moments have a larger

magnitude. Importantly, the spectral characteristics of the ra-
diated power at the FF are significantly different from those
corresponding to the SH, which further illustrates the differ-
ences in the physical phenomena involved in the radiation
process at the two frequencies.

We have also investigated the dependence of the spectra
of the generated SH on the geometrical parameters of the
surface defect. The results corresponding to a Gaussian sur-
face defect are summarized in Fig. 10. This figure shows that
larger defects lead to the generation of a larger SH signal.
This result is an expected dependence of the SHG on the size
of the defect since in the case of larger defects the nonlinear
surface polarization is induced over a larger area, and there-
fore the multipole moments that generate light at the SH are
larger. Also, Fig. 10 suggests that the frequencies at which
the SH spectra have minima are primarily determined by the
radius of the defect, the height �depth� h having only a mar-
ginal influence on the location of these frequencies.

Our calculations show that, unlike the case of the FF, the
spectra of the radiated light at the SH depend to a lesser
extent on the shape of the surface defect. This conclusion is
illustrated by Fig. 11, which shows the spectra corresponding
to cylindrical and hemispherical defects, for both h�0 and
h�0. The general characteristics of these spectra are very
similar to those corresponding to the Gaussian surface de-
fects, part of the observed differences being attributable to
the fact that the defects have different size. Indeed, the
amount of radiation emitted at the SH depends primarily on
the magnitude of the induced multipole moments, and thus
one expects that the general characteristics of the corre-
sponding spectra would depend only slightly on the shape of
the surface defect.

One of the important applications of the theoretical for-
malism presented here is that the spectral characteristics of
the radiation emitted at the SH can be used to extract infor-
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mation about the geometry of the surface defects and their
surface properties. For example, since the angular distribu-
tion of the radiation emitted by electric dipoles, electric qua-
drupoles, and magnetic dipoles are quite different from each
other, the angular distribution of the total radiated light at the
SH will depend strongly on the relative strength of the mag-
nitude of these induced multipoles. Therefore, the angular
distribution of the total light emitted at the SH can provide
valuable information about the shape and surface properties
of the defect. This idea is illustrated in Fig. 12, where we
show the angular distribution of the light emitted at the SH,
as well as the angular distribution corresponding to the elec-
tric dipole, electric quadrupole, and magnetic dipole. Note
that in this figure the parameters of the surface defect and the
wavelength of the incident SPP wave have been chosen such
that the amount of light radiated by each of the three multi-
poles has a comparable magnitude, and therefore the angular
distribution of the total radiated light is different from each

of the angular distributions corresponding to the three mul-
tipoles. However, in the case in which one of the multipoles
dominates, the total angular distribution of the SH will be
similar to the angular distribution of that multipole and thus
this information can be used to determine the properties of
the surface defect.

The angular distribution of the power emitted at the SH
can be used not only to infer which is the dominant multipole
that generates light at the SH but also to obtain information
about the shape of the surface defect. As illustrated in Fig.
13, this is possible because the angular distribution of the
power radiated at the SH is strongly dependent on the shape
of the surface defect. Thus, as Fig. 13 shows, the angular
distribution of the power emitted by a cylindrical defect is
very different from the angular dependence of the power
emitted by an hemispherical defect. Consequently, measuring
the angular distribution of the power generated at the SH
could represent a powerful surface probing tool.

In addition to the angular dependence of the power emit-
ted at the SH, the spatial distribution of the near field at the
SH can provide valuable information about the properties of
the surface defect. In particular, the spatial distribution of the
near field at the SH depends on the shape of the surface
defect and the nature of the surface �through the surface sus-
ceptibility�, and thus near-field surface optical microscopy
measurements at the SH can be used as an effective tool to
study the properties of surface defects.39 As an example, we
show in Fig. 14 the spatial distribution of the near field at the
SH, corresponding to a Gaussian defect. Our calculations
show clearly that such field distributions are strongly depen-
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dent on the shape of the surface defect and the wavelength of
the incident SPP wave, a property explained by the fact that
the relative strength of the induced multipoles that determine
this field distribution is strongly dependent on these param-
eters. Arguments similar to those just presented in connec-
tion to the angular distribution of the power radiated at the
SH allow us to conclude that the near field at the SH can be
used to retrieve additional information, which is not con-
tained in the field distribution at the FF.

IV. CONCLUSIONS

In conclusion, we have presented a comprehensive analy-
sis of the physical characteristics of the SH generated as a
result of the scattering of SPP waves off surface metallic
nanodefects with radial symmetry. Our analysis, based on a
set of coupled-reduced Rayleigh equations, can be applied to
surface nanodefects of arbitrary shape; in particular, we have
investigated surface nanodefects with three different geom-
etries that are important in practical applications, namely,
Gaussian, hemispherical, and cylindrical nanodefects. It
should be noted, however, that the Rayleigh scattering for-
malism presented here should be carefully used. Thus, in the
case of defects with large height or depth, the assumption
that the field near the defect can be expanded in series of
only outgoing waves breaks down. In addition, in the case of
defects with sharp corners one has to use in the field expan-
sion a very large range of wave vectors, and thus the numeri-
cal algorithm might become impractical. Moreover, our
study shows that the physical characteristics of the scattering
process at the FF, namely, the distribution of the electromag-
netic field and the spatial pattern of the emitted radiation, is
markedly different from those of the scattering process at the
SH, and therefore the surface generated SH could prove to be
an invaluable noninvasive diagnosis tool in surface spectros-
copy. In particular, we have demonstrated that the structure
of the generated electromagnetic field at the SH is strongly
dependent on the shape of the surface nanodefects and on the
physical properties of the surface through the surface-profile
function ��x�� and the surface susceptibility �̂s

�2�, respec-
tively. As a result, our study proves that the formalism intro-
duced here has applicability to surface imaging or to surface
physical chemistry, e.g., to measurements of physical quan-
tities related to molecular adsorbates at interfaces or on me-
tallic surfaces.

It is important to note, also, that our formalism can be
easily extended to the case of more than one surface nano-
defect or to a periodic distribution of such surface nanode-
fects. Thus, by extending our theoretical work to these more
complex nanostructures would allow one not only to reach a
deeper understanding of linear and nonlinear light interaction
with nanopatterned metallic structure but also provide us
with a powerful tool to design and investigate plasmonic
nanodevices, such as light concentrators in deep-sub-
wavelength spatial domains or optical nanoantennas.
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APPENDIX: DIFFERENTIAL AND TOTAL SCATTERING
CROSS SECTIONS AT THE FUNDAMENTAL

FREQUENCY

The field distribution described by Eq. �1� contains two
components that are of particular interest for an experimental
investigation of scattering of SPPs by metallic nanostruc-
tures, namely, the far-field component radiated as an outward
propagating spherical wave, in the region x3���x��, and a
cylindrical SPP wave, which represents the far-field compo-
nent of the scattered SPP. The far-field distribution of the
scattered light can be derived from Eq. �1� by using the sta-
tionary phase approximation45 and is given by the expression

Erad
↑ �x;	� = −

i	

2�c
cos �x

ei	/cx

x
�êpAp�x̂�

	

c
sin �x�

+ êsAs�x̂�

	

c
sin �x�� , �A1�

whereas the far-field scattered SPP can be written as43

ESPP
↑ �x;	� =

c
�	�
	

eik��	�x�−
0�	�x3+i�/4

�2�k��	�x�

�
ix̂�
0�	� − x̂3k��	�

��	� + 1
ap�x̂�k��	�� . �A2�

The unit vectors ês= �−sin �x , cos �x ,0� and êp
= �cos �x cos �x , cos �x sin �x ,−sin �x� in Eq. �A1� define the
polarization direction of s- and p-polarized waves, respec-
tively, whereas x=x�sin �x cos �x , sin �x sin �x , cos �x� is a
vector that defines the direction of observation. Note that
expression �A2� is equal to 2� times the residue of the inte-
grand in Eq. �1� at the pole q� =k��	�. Equations �A1� and
�A2� can be used to calculate the amount of energy scattered
into radiative modes �light� and surface plasmon waves.
Thus, the power density radiated in the solid angle defined
by angles �x and �x is

dPrad��x,�x�
d� =x2Re�Sr,rad�x ;	��, whereas

the power density emitted by the surface plasmon wave, in a
direction defined by the angle �x, is

dPSPP��x�
d�x

=x�Re�Sr,SPP�x ;	��. Here, Sr�x ;	� is the radial component
of the Poynting vector. Moreover, the power density associ-
ated to the incident surface plasmon wave, per unit length,
can be written as

dPinc

dx2
=Re�S1,inc�x ;	��, where the compo-

nent S1,inc�x ;	� corresponds to the first term in the right-
hand side of Eq. �1�. Furthermore, these power densities can
be used to define two differential scattering cross sections,
�rad��x ,�x� and �SPP��x�, which characterize the scattering
of the incident surface plasmon wave into radiation and out-
going surface plasmons, respectively,
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�rad��x,�x� �
d�rad

d�
=

1

Pinc

dPrad��x,�x�
d�

, �A3a�

�SPP��x� �
d�SPP

d�x
=

1

Pinc

dPSPP��x�
d�x

. �A3b�

Finally, from the differential scattering cross sections we can
determine the total scattering cross sections, quantities that
are given by the following expressions:

�rad =
1

Pinc
�

0

�/2

d�x sin �x�
−�

�

d�xx
2Re�Sr,rad�x;	�� ,

�A4a�

�SPP =
1

Pinc
�

0

�

dx3�
−�

�

d�xx�Re�Sr,SPP�x;	�� . �A4b�

Here, the incident power Pinc can be written as

Pinc = �
−L/2

L/2

dx2�
0

�

dx3Re�S1,inc�x;	�� . �A5�
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